Impacts of the Lower Stratosphere on the Development of Intense Tropical Cyclones
نویسندگان
چکیده
This study examines potential impacts of the lower stratosphere on the development and the inner-core structure of intense tropical cyclones (TCs). By initializing the Hurricane Weather Research and Forecasting (HWRF) model with different monthly averaged sounding profiles in the Northwestern Pacific and the North Atlantic basins, it is shown that the lower stratosphere layer (LSL) can impose a noticeable influence on the TC structure and development via formation of an extra warm core near the tropopause along with a thin layer of inflow in the LSL at the high-intensity limit. Specifically, a lower tropopause level allows for higher TC intensity and a more distinct double warm core structure. Likewise, a weaker LSL stratification also corresponds to a warmer upper-level core and higher intensity. Of further significance is that the double warm core formation is more sensitive to tropopause variations in the Northwestern Pacific basin than those in the North Atlantic basin, given the same sea surface temperature. The results suggest that variations in tropopause level and LSL stratification could be an important factor that is responsible for the long-term variability of TC intensity.
منابع مشابه
واکاوی دینامیک و ترمودینامیک شدیدترین چرخند حارّهای مؤثر بر سواحل جنوبی ایران
Climatic geography of Tropical Cyclone hazards Affective on the southern coasts of Iran The occurrence of any climatic fringes, including annual tropical storms, leave irreparable risks in its dominated areas. Understanding these events and knowledge of the time of their occurrence can be helpful in managing the unexpected incidents caused by them. Tropical cyclones are important natural turbu...
متن کاملImpact of scaling behavior on tropical cyclone intensities
[1] Theory suggests tropical cyclone maximum potential intensity increases with increasing ocean temperature. However, most tropical cyclones fail to achieve this maximum intensity. Instead, empirical studies suggest that tropical cyclone intensities are uniformly distributed between this maximum potential intensity and an intensity that marks the transition between tropical storm and hurricane...
متن کاملAnalysis of gravity-waves produced by intense tropical cyclones
Conventional and wavelet methods are combined to characterize gravity-waves (GWs) produced by two intense tropical cyclones (TCs) in the upper troposphere and lower stratosphere (UT/LS) from GPS winsonde data. Analyses reveal large contribution of GWs induced by TCs to wave energy densities in the UT/LS. An increase in total energy density of about 30% of the climatological energy density in au...
متن کاملRecent Trends in Australian Region Tropical Cyclone Activity
The number of tropical cyclones observed in the Australian region (south of equator; 105-160~ has apparently declined since the start of reliable (satellite) observations in the 1969/70 season. However, the number of more intense cyclones (with minimum pressures dropping to 970 hPa or lower) has increased slightly. The numbers of weak (minimum pressures not dropping below 990 hPa) and moderate ...
متن کاملNonlocality of Atlantic tropical cyclone intensities
5 [1] The assumption that tropical cyclones respond primarily to sea surface temperatures (SSTs) local to 6 their main development regions underlies much of the concern regarding the possible impacts of 7 anthropogenic greenhouse warming on tropical cyclone statistics. Here the observed relationship between 8 changes in sea surface temperature and tropical cyclone intensities in the Atlantic ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017